A NEW ROUTE FOR SYNTHESIS OF 3,6-DIALKYL-1,4-DIMETHYL-3,6-EPITHIO-AND -3,6-EPIDITHIO-2,5-PIPERAZINEDIONES

Juji YOSHIMURA, Hiroshi NAKAMURA, Kenji MATSUNARI*, and Yuichi SUGIYAMA Laboratory of Chemistry for Natural Products, Faculty of Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152

Five-steps conversion of 3,6-dialkyl-1,4-dimethyl-2,5-piperazinediones into the corresponding 3,6-epithio and -epidithio derivatives: i.e. conversion into 3,3 α ,6,6 α -tetrabromide, substitution of 3,6-bromine atoms with methanol, reduction of 3 α ,6 α -bromine atoms, conversion of 3,6-methoxyl groups into mercapto groups, and then oxidation, is described.

3,6-Epidithio-2,5-piperazinedione skeleton has been first synthesized through substitution of 3,6-dibromo-1,4-dimethyl-2,5-piperazinedione with NaSAc or Na $_2$ S $_4$, 1) and the method was successfully applied only for 3,6-diphenyl derivative. 2) A few analogues were synthesized through the corresponding 3,6-dicarbanions obtained by treatment of appropriate 2,5-piperazinediones with bases. 3) Recently, Kishi et al. synthesized dehydroglyotoxin and sporidesmin A by alkylation of similar carbanions of 3,6-dimercapto-2,5-piperazinediones whose mercapto groups being protected as thioacetal of p-anisaldehyde. 4) In a previous paper, we found that bromination of 1,3,4,6-tetramethyl-2,5-piperazinedione gave 3,3 α ,6,6 α -tetrabromo derivative, and substitution of the 3,6-bromine atoms with several sulfur-containing nucleophiles gave only 3,6-dimethylene derivative and sulfur, in participation with 3α ,6 α -bromine atoms. 5)

To exclude the participation, 3α , 6α -bromine atoms were selectively reduced, after conversion of 3,6-bromine atoms into methoxyl groups. Substitution of the methoxyl groups with mercapto groups in the presence of ${\rm ZnCl}_2$, and successive treatment with ${\rm H}_2{\rm S}$ and ${\rm KI}_3$ gave the desired epithio and epidithio derivatives.

Methylation of 3,6-dialkyl-2,5-piperazinediones in DMF with NaH and ${\rm CH_3I}$ under cooling gave quantitatively cis and trans mixture of the corresponding 1,4-dimethyl derivatives (Ia-d). Bromination of I in ${\rm CCl_4}$ with 4 equimolar amount of NBS gave the corresponding 3,3 α ,6,6 α -tetrabromo (IIa,b) or 3,6-dibromo derivatives in good yields, depending on the chain or α -branched structure of alkyl groups, respectively. Treatment of IIa,b with excess methanol gave the corresponding 3,6-dimethoxy derivatives (IVa,b), which were quantitatively converted into debromo derivatives (Va,b) by hydrogenation with Bu_3SnH in toluene. 3,6-Dibromo derivatives could not be purified. However, it was confirmed by conversion into the corresponding dimethoxy derivative (IIIc) in the case of Ic. Treatment of the crude dibromides in CHCl_3 with gaseous H_2S, and successive oxidation of the product with KI_3 gave concurrently the corresponding 3,6-epithio (VIc,d) and 3,6-epidithio (VIIc,d)

	Table 1.			
Compound	Mp (°C)	Yield (%)	RR'CR"	CHRR'
IIa	188 (dec.)	72	L_R"	1
IIIc	113 - 115	43 ^{a)}	., ., ., ., 0	0
IIIc' ^{b)}	193 - 194	43~7	MeN M	eN S.
IVa	160		, NMe	. ↓ NMe
IVa' ^{b)}	198 - 200	86	0 - 0	
Va	160 (sublime)		. P _R ‴	
Va' ^{b)}	201 - 202	95	RR'CR"	CHRR'
Vb	165 - 167	72 ^{a)}		
VIa	63 - 65	72	Ia-d: R''= R'''= H	VIa-d: x = 1
VIb	76 – 78	19	IIa,b: R''= R'''= Br	VIIa-c: x = 2
VIc	146 - 147	43	<pre>IIIc: R''= H, R'''= OMe</pre>	
VId	89 - 90	19 ^{a)}	<pre>IVa,b: R''= Br, R'''= OMe</pre>	a: $R = R' = H$
VIIa	145 - 146	18	Va,b: R''= H, R'''= OMe	b: $R = CH_3$, $R' = H$
VIIb	110 - 111	33		C: R = R' = Me
VIIc	109 - 110	2.3		d: R = Et, R'= Me

- a) Overall yield from the corresponding compound I.
- b) The prime on compound number means the corresponding isomer.

derivatives. Conversion of Va,b into VIa,b was successfully performed by the method of Schmidt et al.⁶⁾ Yield and mp of isolated compounds were summarized in Table 1, whose analytical values consisted with theoreticals.

Conversion of III or V into VI and VII seems to proceed through SN_1 mechanism, since the ratio of VI to VII was the same in the case of cis or trans isomers of III and V. The higher chemical shifts of N-CH $_3$ protons in VI (δ 2.70 - 2.81) than those in VII (δ 3.05) indicate that the more compressed structure of VI makes N-methyl groups closer to the shielding zone of the carbonyl group of opposite side. More detailed discussions on the problem of isomers and reaction mechanism will be made elesewhere.

References

- P. W. Trown, Biochem. Biophys. Res. Commun., 33, 402 (1968); H. Poisel and
 U. Schmidt, Chem. Ber., 104, 1714 (1971).
- 2) S. G. Svokos and R. B. Angier, Ger. 2029305 (1971).
- 3) E. Ohler, H. Poisel, F. Tataruch, and U. Schmidt, Chem. Ber., <u>105</u>, 635 (1972);
 T. Hino and T. Sato, Tetrahedron Lett., 3127 (1971).
- 4) Y. Kishi, T. Fukuyama, and S. Nakatsuka, J. Amer. Chem. Soc., <u>95</u>, 6490, 6492, 6493 (1973).
- 5) J. Yoshimura, Y. Sugiyama, and H. Nakamura, Bull. Chem. Soc. Japan, <u>46</u>, 2850 (1973)
- 6) H. Poisel and U. Schmidt, Chem. Ber., <u>106</u>, 165 (1973).
- * Present address: Central Research Laboratory of Kumiai Chemical Industry Co. Ltd., Shibukawa, Shimizu-shi.